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Various methods of treating particles at the boundary walls in a magnetized simulation 
plasma are. studied extensively. Especially, Lee and Okuda’s ‘reflection scheme’ and the 
numerical instability caused by this scheme alone are investigated in detail. Methods 
(Method I, Method II, and the random reflection method), which eliminate the numerical 
instability, are proposed. They are simple and straightforward, and introduce neither a 
density gradient nor a surface current next to the walls. Lee and Okuda’s complete method 
is stable by virtue of the introduction of a ‘smoothing scheme,’ and our methods provide 
an alternative. 

I. INTRODUCTION 

Particle simulation has contributed to the understandings of plasma physics. 
In particular it is a powerful tool for understanding transport phenomena across a 
magnetic field. Plasma diffusion due to low frequency convective cells [I] and electron 
diffusion caused by low frequency ion fluctuations or lower hybrid waves [2] are some 
examples. 

In many of these, the infinite and homogeneous plasma is simulated by using 
periodic boundary conditions. There are no numerical difficulties with these boundary 
conditions. However all experimental plasmas are finite and bounded, and hence 
inhomogeneous. Inhomogeneity in plasmas produces many interesting phenomena, 
for example drift-wave instabilities and trapped-particle instabilities. It is important 
to use a bounded plasma model to simulate a inhomogeneous plasma. Moreover 
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bounded plasma model itself involves many significant phenomena; Gould Trivelpiece 
waves [3], sheath layers and their oscillations [4], etc. 

Boundary conditions for a finite simulation plasma have been studied in some 
papers [5-71. Due to the restrictions on memory and CPU time for computers, we can 
only simulate a small volume of plasma compared with real one. Further we must 
determine the boundary conditions in such a way so as not to disturb the phenomena 
of interest in the interior of the plasma. If one is not careful, the boundary phenomenon 
can dominate the whole plasma behaviour. 

The important boundary condition for simulating a bounded plasma in a static 
external magnetic field is the treatment of particles at plane walls which are parallel 
to the magnetic field. These walls modify the cyclotron motion of charged particles 
and cause shifts of guiding centers of particles which hit the walls. Then macroscopic 
density gradients, currents near the boundaries and surface waves can be produced. 
These effects may seriously obscure the phenomena of interest in a simulation plasma. 

W. W. Lee and H. Okuda [5] examined the above mentioned boundary effects 
and proposed a rather special “reflection scheme” of particles in which the positions 
of the guiding centers of the particles striking the wall do not suffer any shift along the 
wall. This “reflection scheme” alone has generated the numerical instability near the 
boundary [5]. Therefore the “smoothing scheme” has been necessitated to smooth 
out the potential fluctuations associated with the instability [5]. Lee and Okuda’s 
method (LOM) consists of these two schemes and has been used with satisfactory 
results in simulating drift wave instabilities [5, 8, 9, lo]. 

Although LOM is useful to simulate a bounded plasma, it includes a nonphysical 
effect; a macroscopic surface current layer exists due to the counterrotating particles 
(while the surface instability introduced by this current is remedied by the “smoothing 
scheme,” the phenomenon next to the wall is still nonphysical). In this paper we 
present methods which exclude such a spurious effect. The methods are simple relative 
to LOM. They are stable without the “smoothing scheme” with no mathematical 
or physical complications. We can use these methods even in magnetostatic and 
electromagnetic codes because of having no artificial current. 

In Sec. 2, the “reflection scheme” of Lee and Okuda is studied in detail. The 
study is instructive to know the importance and the subtlety of the boundary problem 
because the instability caused by using this scheme alone is typical of the boundary 
phenomena. The study also improves our physical understandings of numerical 
products next to the wall. In Sec. 3, simple methods which involve no spurious 
nonphysical effect are presented as well as comparisons with other existing methods. 
Concluding remarks and discussions are given in Sec. 4. 

II. LEE AND OKUDA’S METHOD 

First we review the method of treating particles at the boundary proposed by 
W. W. Lee and H. Okuda [5]. For simplicity let us consider a two dimensional system 
which is normal to the magnetic field in the z direction; the particle motions along 
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the magnetic field are neglected; the plasma is filled in the positive x region bounded 
by a wall at x = 0. We concentrate our attention on this wall. Further let us consider 
the homogeneous plasma next to the wall because any successful boundary condition 
should be quiet and stable at the least in this situation. 

Frm. 1. Illustrations for different boundary conditions. Reflecting boundary condition is shown 
in (a). Lee and Okuda’s ‘reflection method’ is shown in (b). The origin of the surface current in this 
method is also shown. Method I is shown in (c). Initial condition in Method II is shown in (d) where 
x,, indicates the position of the wall. It shows the initial treatment of the particles which are outside 
the system due to the uniform loading of the guiding centers. The combination of this initial condition 
and the reflecting boundary condition is Method II. Note that this initial condition is the one that 
should be used with Method I. 

Lee and Okuda claim that the reflecting boundary condition, where a particle 
exiting from the system is reflected back into the original system at every time step 
with x -+ --x and v, -+ -v, (see Fig. la), causes two effects; (1) a sheath current 
along the wall and (2) a sharp density gradient near the boundary the width of which 
is of the order of a Larmor radius. These effects come from the disturbance of the 
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guiding-center positions of the particles which strike the wall. Then, they proposed 
another method of reflection which is illustrated in Fig. lb. In their method, particles 
which hit the wall are reflected by the reflecting boundary condition but moved in a 
inversed magnetic field until they hit the wall again where they are reflected and 
moved in a normal magnetic field. It is to be noted that both the particles which move 
in a normal magnetic field and ones which move in a inversed magnetic field, feel the 
electric fields in their actual positions without changing the signs of their charges. 
Hence total energy is conserved as well as the total charge. The guiding centers of the 
particles change in the x direction each time they hit the wall. However they do not 
suffer any shift along the wall. 

Lee and Okuda’s method (LOM) consists of this “reflection scheme” and the 
“smoothing scheme” as stated in the introductory section. In this section, we only 
consider the “reflection scheme” and the results caused by using this scheme alone, 
because typical boundary phenomena are clearly seen for this case. The study gives us 
good understanding of the boundary phenomena as well as the suggestion to the 
simpler methods being stable without the “smoothing scheme.” 

The merit of LOM is that it produces no density gradient near the wall. However, 
it causes a macroscopic current in the y direction. In LOM, we have the macroscopic 
density nboM(x) and velocity v,““~(x) in the following forms; 

nSoM(x) = const., (la) 

VI3 LoM(x) = sgn(qJ J: uto ew [ - +] i, , 0 

where qO , uto and p0 are the charge, the thermal velocity (=( ~,/wzJ’/~) and the Larmor 
radius ( =D&+,) for species a (u = e, i), respectively, and i, is the unit vector in the 
y direction. Eqs. (1) are derived as follows. Suppose that the particles have a 
Maxwellian velocity distribution and that the guiding centers are located in x > 0 
with a constant density (n,). (In x < 0, there are no guiding centers.) Then the 
density n,,(x) and the macroscopic velocity v&x) calculated from the real particle 
positions and velocities are given by 

noa(x) = tj (no> [ 1 + @ (-&-)I, 

Vdx) = kT sgn(qJ uto exp (: ) & i, , 

where n,,(x) is expressed in terms of the error function 

(2b) 

(SC) 
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In LOM, IZ~,,(X) and V&X) in the negative x region are mirror-reflected back to the 
positive x region. Then, we obtain Eqs. (1) from the following equations: 

nbO”(x) = 64-4 + &d-x>, (34 
v,LO”(x) = %&> + v&A-x), (3b) 

where x is positive. 
The physical origin of the surface current (macroscopic velocity) is as follows. In 

the narrow region near the boundary there are two types of particles. The first consists 
of particles coming from the wall and moving in a inversed magnetic field. The second 
consists of particles coming from the inner part of the system. Both types of particles 
traverse this region in the same direction as illustrated in Fig. l(b). This results in a 
macroscopic current along the wall. 

It is to be noted that this current quite resembles the diamagnetic current due to the 
density gradient. Both are produced by the finiteness of the Larmor radius. Then, 
the current along the wall can excite a drift-wave like instability if there is a small 
angle 8 between the z-axis and the magnetic field (tilted B) (i.e., if the particle motions 
parallel to the magnetic field are included in the code). The origin of the numerical 
instability observed by Lee and Okuda using the “reflection scheme” alone, must 
have been this kinetic instability. 

In order to confirm the above prediction and to know the evolution of the instability 
in detail, we made a simulation with “reflection scheme” in LOM. A simulation model 
is a 2-l/2 dimensional electrostatic dipole expansion code [ll, 121 with a static 
magnetic field slightly tilted from the z direction in the y direction. Finite-sized 
particles [13, 141 with Gaussian-shaped charge distributions are used. The schematic 
diagram of the system is shown in Fig. 2. The plasma is uniform both in the x and the 

1 B 

Magnetic field 

FIG. 2. Sketch of the bounded plasma model in a magnetic field. The cases of the 9 = 0” and 
B f 0” correspond to the 2 and 2-l/2 dimensional codes, respectively. Periodic boundary condition 
is used in the y direction. 
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y directions and is bounded by the conducting walls at x = 0 and x = L, where the 
electrostatic potentials are zero. Periodic boundary condition is used in they direction; 
particles leaving a boundary at y = 0 ( y = Lw) are reintroduced at the opposite 
boundary at y = L, ( y = 0). The “reflection scheme” in LOM is used at the left 
wall (x = 0). On the other hand, another method (Method I) is used at the right wall 
(x = L,). Method I is stable and will be discussed in Sec. 3. It will be shown that the 
plasma is unstable near the left wall and stable near the right wall. Initially the 
guiding centers of the particles are uniformly loaded with Maxwellian velocity 
distributions. No quiet start technique [15] is used. The parameters are 

System size, L, x L, = 32 x 32; Number of particles, N, = Ni = 8192; 
Particle size, (I, = a, = 1.5; Finite time step, dt = 0.4; Mass ratio, 
m,/m, = 25; Temperature ratio, Ti/Te = 0.25; Electron Debye length, 
h,, = 1.41; Electron Larmor radius, pc = 1 .O; Ion Larmor radius, pi = 2.5; 
Electron cyclotron frequency, uCe = 1.41; Angle between the magnetic field 
and the z-axis, 8 = 1.5”. 

Here lengths and times are normalized by the grid spacing d and the inverse of the 
electron plasma frequency wje , respectively. 

FIG. 
(2, 1). 

-------(1,1) made 

- (2,l) mods 

. . . . . ..($I) mode 

(b) 

3. (a) Growth of Fourier modes of the electrostatic potential. (b) Phase of the mode (m, n) = 
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Now, let us look at the gross behavior of the surface instability near the left wall. 
Fig. 3 shows the time dependence of the Fourier components of the electrostatic 
potential, (m, n) = (1, I), (2, 1) and (3, l), where m and n correspond to the wave 
numbers, k, = mr/L, and k, = 2nnlL,, respectively. These modes grow above the 
thermal noise at t N 800, exponentiate linearly until t N 1250 and saturate at 
t N 1400. Then the amplitudes of the modes keep almost the same values at the 
saturation stage. No instability is observed for II = 2 and higher modes. The observed 
growth rate is y = 0.0054. Fig. 3(b) shows the time dependence of the phase of the 
mode (m, n) = (2, 1). Excellent coherency is observed after t N 1000 and the 
measured frequency from this is w = 0.0052. The direction of the phase velocity is 
that of the macroscopic electron velocity near the wall. This is confirmed by the other 
simulation using the “reflection scheme” in LOM at the right wall (at the left wall, 
Method I is used), in which the direction of the phase velocity is changed corre- 
sponding to the change of the direction of the surface current. 

The spatial structures of the n = 1 mode are shown in Fig. 4. The growth of the 
instability at the LOM boundary (x = 0) is clearly observed. The width of the 
perturbed region is about the ion Larmor diameter at the initial and the middle 
stage of the linear growth (t = 880 and t = 1040). It begins to spread in the final stage 
of the linear growth (t = 1280) and it is more than several times the ion Larmor 
radius in the saturation stage (t = 1920). This spreading is critical because the typical 
size of a simulation plasma transverse to the magnetic field is usually 20 - 3Op, and 
there are two boundary walls. 

eI@(x,n=l) I 
0.15 T 

0.00 
0 Lx/Z 

DISTANCE 

FIG. 4. Mode structure for n = 1 mode. The growth of the mode is shown in conjunction with 
the spreading of the width of the perturbed region. Lee and Ok&a’s ‘reflection scheme’ is used at 
the left wall, while at the right wall Method I is used. 
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Fig. 5 shows the spatial structures of the macroscopic currents due to the ions. 
In Fig. 5a which corresponds to the initial time of the simulation, there is a current 
near the left wall due to a special kind of the treatment of the particles by LOM. Its 
spatial dependence on x agrees quite well with the prediction of Eqs. (1). At the 
initial stage of the linear growth (Fig. 5b), the surface current is perturbed in the 
y direction due to the E x B drift by the n = 1 surface mode. The width of the current 
layer is also about a ion Larmor diameter. At the final stage of the linear growth 
(Fig. 5c) the current is considerably modulated by the n = 1 mode. Its width is about 
four times as large as the ion Larmor radius. The change in the current is due to the 

(b) q& =626 

(d) Wp,t =I980 

FIG. 5. Spatial structures of the macroscopic current due to the ions. The lengths of the arrows 
are proportional to the magnitudes of the currents. One fourth of the L, is equal to the magnitude 
n,vti . l?ach figure corresponds to (a) the initial time of the simulation, (b) the time when the instability 
sets in, (c) the f?nal stage of the linear growth and (d) the saturation stage of the instability. 
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nonlinear transport of the particles via E x B drift of the surface mode. The averaged 
x components of the current is directed to the left wall, and this generates the large 
density gradient near the boundary. In the saturation stage (Fig. 5d) the width of the 
current layer is more than several times pi . This width agrees quite well with that of 
the region where rt = 1 potential mode is dominantly excited (Fig. 4). The form of 
the current layer is vortex like in this stage, and the initial current profile is completely 
wiped out. 

Electron and ion temperatures which are parallel and perpendicular to the magnetic 
field are also observed. The electron parallel temperature near the left wall decreases, 
which indicates that the inverse Landau damping of the electrons is the origin of the 
instability. 

From all the results described above, we know that this instability firstly observed 
by Lee and Okuda, closely resembles the drift-wave instability [S, IO]. This numerical 
instability is closely related to the electron motion along the magnetic field and the 
surface current of the electrons. When the 2 dimensional code is used, this instability 
does not occur. Moreover, when the guiding center approximation is used to push the 
electrons (such case is also discussed in Ref. [5]), the instability would not occur 
because electron surface current is eliminated. Also, the “smoothing scheme” [5] 
can eliminate the instability by retarding the growth of the surface wave. 

III. MODIFICATIONS OF THE BOUNDARY CONDITIONS 

In order to suppress the numerical instability, Lee and Okuda have proposed the 
“smoothing scheme” to be used together with the “reflection scheme.” Another way 
to face the boundary phenomena is to find methods of treating particles which are not 
unstable in themselves. For this purpose, it is necessary to find methods which 
introduce no macroscopic current as well as the density gradient. Here we show such 
boundary conditions. The configuration is the same as the one described in Sec. II. 

A. Method I 

One of the method is to reflect to a particle with the reversed velocity (Method I, 
see Fig. lc) at the wall 

v, - -v, 3 (44 

v,- -vy, (4’4 

where the coordinate system perpendicular to the magnetic field is assumed (the case 
of 8 = 0” in Fig. 2). This method produces neither a density gradient nor a macro- 
scopic current as seen from the following modification of Eqs. (3); 

v,(x) = v&c) - v&-x) = 0. (5b) 
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Here, it is assumed that the particles have been loaded as to satisfy Eqs. (5)‘; an 
actual method of initially loading particles is described in the following subsection 
concerning Method II. When one uses a 2- l/2 dimensional code, one must reflect only 
the components of the velocity perpendicular to the magnetic field; 

v, - -v, > (64 

vu - -vu cos 28 + v, sin 28, (6b) 

v, + v, sin 28 + 0, cos 20. w 

Since the time is discretized in the simulations, one should determine the new position 
of the particle with linear interpolations 

x + 2x, - x, (W 
y - r(y- + DUN At) + (1 - T)Y, 

I = (x - xJ(x - x-), 

(7b) 

(7c) 

where x0 represents the position of the wall (here, x = 0); vVN means the newly 
determined velocity; x- and y- show the positions of the particle at the last time step 
(i.e., x- = x - v, dr, y- = y - v, At). Here we are assuming the leap-frog-scheme 
for the particle pushing ,algorithm. Eqs. (7) can be used both for the 2 and 2-l/2 
dimensional codes. 

One may think that the guiding center shifts at the wall inherent to Method I would 
dominate the physics. However the current produced by the guiding center shifts of 
the particles is completely cancelled out by the current produced by the particles just 
missing the wall. Therefore there is no net macroscopic current along the wall. 

Method I has been used at the right wall (x = L,) of the system in the simulation 
which is presented in the previous section. Fig. 5a shows that initially there is no 
macroscopic current near the right wall. From Fig. 4 and Figs. 5b,d, it is shown that 
Method I is stable and that it does not affect the phenomenon in the interior of the 
plasma. In fact the surface instability excited at the left wall is successfully simulated 
without any interference from the right wall. This method has been used quite 
satisfactorily in the simulation studies of the drift-wave instabilities caused by the 
temperature gradient [ 161. 

B. Method II 

If we could choose the initial condition correctly with the reflecting boundary 
condition, the net surface current would disappear as in the case of Method I. One 
such set of initial conditions is as follows: first the guiding centers of the particles are 
uniformly loaded in the system and the real velocities are assigned to these particles; 
secondly, the real positions of the particles are determined, some of which are outside 

581/33/I-7 
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the boundary; thirdly, the positions and the velocities of the particles outside the 
system are changed as 

x + 2x, - x, @a) 

va! - %! , (W 

%I+ -v,, (8~) 

where new guiding centers of these particles are outside the boundary. (See Fig. Id.) 
In the 2-l/2 dimensional code, v, and v, should be changed following (6b) and (6c), 
while x and 21, should be changed following Eqs. (8a) and (8b). 

Method II is the combination of this modified uniform guiding center loading and 
the reflecting boundary condition. Method I also uses this initial condition. Let us 
show that Method I and II give the same macroscopic quantities (n,,(x), v~(x), etc.) 
if only the unperturbed orbits of the particles are taken into consideration. Suppose 
that in Fig. 6 particles which are to move along the orbits a, b in Method I and c, din 
Method II, are uniformly loaded on these orbits (viz., the number density of the 
particles on these orbits are the same everywhere). Then these systems are stationary 
and one cannot distinguish between these systems from the macroscopic point of view. 

(a) Method I 

Boundary 

(b) Method II 

Boundary 

FIG. 6. Illustration that (a) Method I and (b) Method II are same macroscopically. Dashed lines 
(a, c) and solid lines (b, d) represent the unperturbed orbits of reflected particles. It is supposed 
that parti&s ate located uniform& on these orbits. 
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(From the microscopic point of view, for example, a particle pl( p;) and a particle 
p&J which are located at the same position in the each system move differently 
according to the method of reflection.) If the initial particle distributions are deter- 
mined from the superpositions of these particle distributions, such systems are also 
same macroscopically. The initial condition described here satisfies this condition. 
One can then conclude that Method I and II are same macroscopically and Method II 
also does not produce the unphysical surface phenomenon. 

The initial condition presented here is not the unique one and one will be able to 
make many modifications, if one want to reduce the statistical fluctuations. 

The simulation is made with Method II with the same system and parameters 
shown in Section 2. It is found that there is neither a density gradient nor a surface 
current and that there is no surface instability. Additional simulation is done with 
another incorrect initial conditions where the velocities and the positions of the 
particles outside the system in the uniform guiding center loading are changed as 
co+ -CT, x + 2x, - x. The reflecting boundary condition is used. As pointed out 
by Lee and Okuda [5] and described in Section 2, it is found that there is a large 
density gradient and a macroscopic current. These effects are produced by the change 
in the probabilities of the particle distributions on orbit c and din Fig. 6b due to the 
incorrect initial conditions. All the guiding centers of the particles are inside the 
system. In addition the dominant surface current is not due to the guiding center 
shifts along the wall but due to the particles gyrating in the system near the wall 
(viz., due to the diamagnetic current). 

Method II makes use of the modified uniform guiding center loading as the initial 
condition. If the real positions of the particles are uniformly loaded with the reflecting 
boundary condition, such a system is also free from the density gradient and the 
macroscopic current near the wall. However uniform guiding center loading is 
preferable in many cases. It has less fluctuations if the magnetic field is relatively 
strong. When the plasma where the inhomogeneity exists only in the central region 
away from the wall is treated, slight modification of the uniform guiding center 
loading can be used for the initial condition. 

In connection with Method II let us consider the fully ionized plasma confined 
by the perfectly reflecting walls. It is well known that even in a fully electromagnetic 
system, such a plasma has no magnetic effect if it is in thermodynamic equilibrium. 
This is because the motion of the particles that are reflected by the walls represents a 
current, and the magnetic moment of this current exactly cancels the magnetic 
moment of particles gyrating in the interior [ 17, 181. Although the electrostatic code 
used here does not include the magnetic effect, what is important is that the code can 
realize the thermodynamic equilibrium state. Method II realizes this state and 
produces no unphysical surface effect near the boundary. Moreover even if the code 
includes magnetic effects, Method II can be used without modifications. 

C. Random Reflection Method 

There is another set,of boundary conditions where particles are reflected with the 
given velocity distribution. In the unmagnetized plasma, particles are reintroduced 
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with a half-Maxwellian velocity distribution [7]. However in the magnetized plasma 
we have the velocity distributions as 

where 
j = R, L, 

(JR = -1, UL = 1, 
(9c) 

where subscripts R and L represent the left and right walls, respectively. Eqs. (6) are 
obtained by calculating the velocity distribution of particles which cross the wall at 
x = x0 in the +x (-x) direction assuming a homogeneous plasma whose guiding 
centers are located uniformly in the whole space with a Maxwellian velocity distri- 
bution. Because the energetic particles have larger Larmor radius than the cold 
particles, larger number of energetic particles can cross the wall at x = x0. This 
gives rise to a change in a velocity distribution described above. 

One must determine the new position of a reflected particle with the linear inter- 
polations; 

x --+ x0 + rvsN At, (104 

Y - r(y- + vyN At) + (1 - f-1 y, (lob) 

where vZN and vyN are the new velocities according to Eqs. (9) and r is given by Eq. (7~). 
It is straightforward to extend Eqs. (9) and (10) to the 2-l/2 dimensional code. We 
also checked this method and found that it produces neither density gradient nor 
surface current. When the linear interpolations in Eqs. (10) are not used, however, 
the density gradient and the macroscopic current become large as the time steps 
increase. 

D. Nevins and Gerver ‘s Method 

Let us see the method proposed by Nevins and Gerver (we call this NGM) [6] to 
compare it with methods described earlier. In NGM, it is assumed that the plasma 
has inverse symmetry around the point (x = 0, y = 0). (The region to be simulated 
is 0 < x < L, and -L,/2 < y < L,/2.) Then a particle going out of the x = 0 
boundary at y = y, is reintroduced at y = -y, and x = 0, with its velocity (x, y, z 
components) reversed. This holds both for the 2 and 2-l/2 dimensional codes. The 
advantage of NGM is that it is equivalent to having no wall at all at x = 0. NGM will 
have no instability near the wall because it produces neither a density gradient nor a 
macroscopic current. Boundary condition for the field is also restricted by the inverse 
symmetry condition. The upper ( y > 0) and the lower ( y < 0) domain are connected 
directly at the boundary. Then if a strong instability is excited in the interior of the 
plasma, there may be strong coupling of the upper and the lower domains through 
the boundary. (NGM is developed for the drift wave simulations.) However, if the 
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density gradient are restricted to the region away from the wall at x = 0 (it is the case 
employed by Nevins and Gerver [6]), NGM would have no problem becaues the 
instability is also restricted to that region. 

Compared with LOM, Method I, Method II and the random reflection method are 
simple and straightforward with no mathematical or physical complications. These 
are better than LOM because these do not generate the surface current. These are 
also better than the usual reflecting boundary condition, because these do not produce 
a density gradient which introduces a large electric field and diamagnetic currents near 
the boundary. 

Compared with NGM, our methods seem to be the results of the different approach 
to the same problem. The former is the results of the endeavor to eliminate the walls 
and the latter is that to make good use of the walls. Both would be same for the 
phenomena occuring only in the interior of the system away from the walls. 

V. DISCUSSIONS AND CONCLUSIONS 

We have studied different treatments of particles at the boundary wall in a magne- 
tized simulation plasma. Especially, the “reflection scheme” proposed by Lee and 
Okuda is investigated in detail. It is found that the numerical instability caused by 
this scheme (the existence of which was first observed by Lee and Okuda [5]) is the 
kinetic instability coming from the macroscopic current along the wall. The evolution 
of the instability was quite akin to that of the drift-waves driven by the density 
gradient. The problem associated with this instability has been remedied by the 
“smoothing scheme” of the potential fluctuations [5]. 

We have described three methods (Methods I and II and the random reflection 
method) to treat the particles at the walls. They are simple and straightforward, and 
introduce neither a density gradient nor a surface current, and hence avoid any 
surface instability. When one uses a bounded plasma model to simulate the phenomena 
in the interior of the system away from the walls, Method I as well as Method II 
would be appropriate. However when one wants to simulate the phenomena occuring 
dominantly near the boundary, Method II might be more realistic because the 
reflecting boundary used in the method has the physical interpretation as the elastic 
collisions between the particles and the plane walls. The random reflection method 
can be used for aims such as fixing the temperature at the walls. 

In this paper, we have presented these methods so as to work very well for homo- 
geneous plasmas. These methods can also be used for a system where the inhomo- 
geneity exists only in the central region away from the walls. Now, let us consider a 
case where the sharp inhomogeneity exists next to the wall. For simplicity we consider 
only Method I and Method II. In this case, it is necessary that the method of initially 
loading particles realizes the given equilibrium distribution and that the method of 
treating particles does not change this distribution. The extension of the methods to 
satisfy these conditions is straightforward if the out-of-bounds particles determined by 
the guiding center loading are replaced into the system following the same method 
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described concerning Method II. However, the charge separation remains for this 
case, because the actual charge densities for different species of particles are not the 
same. Then, there is a possibility of weak instability (we have not verified this case in 
actual simulations). The same problem exists for LOM, although it may not so 
important because of the “smoothing scheme” used together. The new initial loading 
scheme which does not generate the charge separation is needed. For such a distri- 
bution, Method II will be useful because reflecting boundary condition can maintain 
arbitrary distributions. At this point in time, Lee and Okuda’s method is the only 
method to handle such a problem. 

The surface current introduced by some method, distrubs the interior of the plasma 
only after the time when the instability occurs in the electrostatic code. However in the 
magnetostatic code [19] this surface current itself can give rise to the magnetic field 
and plasma will be strongly diamagnetic. The phenomena one wants to simulate will 
considerably change. Our methods are useful not only for the 2 and 2-l/2 dimensional 
electrostatic codes verified in this paper, but they will be also useful for the 3 
dimensional electrostatic code and the magnetostatic particle simulation code. 
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